LOADING

人生天地之间,若白驹之过隙,忽然而已。

量子力学基础公式(初版)

  前言:这篇博客是由于我没活整所以决定写的,意在总结一下做量子力学习题可能会用到的一些常用公式(某人:做题蛆闹麻了【你已经被我预判到了】),至于之后应该会结合各类教材以及个人的理解出个《简明量子力学教程》的系列博客,正如Feynman所言"What I cannot create, I do not understand"。当然会不会真的写就看后人智慧了(笑)

 此外,个人整理的公式不一定全,也不一定有逻辑顺序,我是想到什么就写什么的,没有按常见的章节分类,完全按我一时兴起的分类,所以这只是初版,日后可能会做些许改动与增补。



可能会常用的数学公式

  1. 三角函数:

sinx=eixeix2isinx = \frac{e^{ix}-e^{-ix}}{2i}

cosx=eix+eix2cosx = \frac{e^{ix}+e^{-ix}}{2}

sinαcosβ=12[sin(α+β)+sin(αβ)]sin \alpha cos \beta = \frac{1}{2}[sin(\alpha + \beta)+sin(\alpha - \beta)]

cosαsinβ=12[sin(α+β)sin(αβ)]cos \alpha sin \beta = \frac{1}{2}[sin(\alpha + \beta)-sin(\alpha - \beta)]

cosαcosβ=12[cos(α+β)+cos(αβ)]cos \alpha cos \beta = \frac{1}{2}[cos(\alpha + \beta)+cos(\alpha - \beta)]

sinαsinβ=12[cos(α+β)sin(αβ)]sin \alpha sin \beta = -\frac{1}{2}[cos(\alpha + \beta)-sin(\alpha - \beta)]

  1. 积分公式:

+eax2dx=πa\int_{-\infty}^{+\infty}e^{-ax^2}dx=\sqrt{\frac{\pi}{a}}

+x2eax2dx=12aπa\int_{-\infty}^{+\infty}x^2 e^{-ax^2}dx=\frac{1}{2a} \sqrt{\frac{\pi}{a}}

0+xneαxdx=n!αn+1\int_{0}^{+\infty}x^{n}e^{-\alpha x}dx=\frac{n!}{\alpha ^{n+1}}

0+x2neβx2dx=(2n1)!!2nπβ2n+1\int_{0}^{+\infty}x^{2n}e^{-\beta x^2}dx=\frac{(2n-1)!!}{2^n} \sqrt{\frac{\pi}{\beta ^{2n+1}}}

0π2sinnxdx=0π2cosnxdx={n1nn3n2...231n为奇数n1nn3n2...3412π2n为偶数\int_{0}^{\frac{\pi}{2}}sin ^n x dx=\int_{0}^{\frac{\pi}{2}}cos ^n x dx= \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot ... \frac{2}{3} \cdot 1 \qquad n为奇数\\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot ... \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \qquad n为偶数 \end{cases}

  1. 泰勒展开:

1+x=n(1)n1(2n3)!!2n!!xn=1+12x18x2+116x3...\sqrt{1+x} = \sum_{n}(-1)^{n-1}\frac{(2n-3)!!}{2n!!}x^n =1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - ...

ex=n1n!xn=1+x+12!x2+13!x3+...e^x = \sum_{n}\frac{1}{n!}x^n = 1 + x + \frac{1}{2!}x^2 + \frac{1}{3!}x^3 + ...

sinx=n(1)n(2n+1)!x2n+1=x13!x3+15!x5...sinx = \sum_{n}\frac{(-1)^n}{(2n+1)!}x^{2n+1}= x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - ...

cosx=n(1)n(2n)!x2n=112!x2+14!x4...cosx = \sum_{n}\frac{(-1)^n}{(2n)!}x^{2n}= 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - ...

ln(1+x)=n(1)nn+1xn+1=x12x2+13x3...ln(1+x)=\sum_{n}\frac{(-1)^n}{n+1}x^{n+1}= x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - ...

11x=nxn=1+x+x2+...\frac{1}{1-x}=\sum_{n}x^n = 1 + x + x^2 + ...

11+x=n(1)nxn=1x+x2...\frac{1}{1+x}=\sum_{n}(-1)^n x^n =1 - x + x^2 - ...



Schrödinger方程

  1. 含时Schrödinger方程:

itΨ(r,t)=H^Ψ(r,t)i\hbar \frac{\partial}{\partial t}\Psi (r,t)=\hat{H}\Psi (r,t)\\

其中:H^=22μ2+V(r,t)\hat{H}=-\frac{\hbar ^2}{2\mu}\nabla ^2 + V(r,t)

  1. 定态Schrödinger方程:

H^Ψ(r)=EΨ(r)\hat{H}\Psi (r)=E\Psi (r)

  1. 时间演化算符:

U^=eiEt/\hat{U}=e^{-iEt/ \hbar}

  1. 概率流密度:

J=i2μ[ψψψψ]J=-\frac{i\hbar}{2\mu}[\psi ^* \nabla \psi - \psi \nabla \psi ^*]

常见势场

  1. 一维无限深势阱(三维作简单乘积即可):

V(x)={00<x<aelseV(x)= \begin{cases} 0 \qquad 0 < x < a \\ \infty \qquad else \\ \end{cases}

其定态能量与波函数为:

En=n2π222μa2n=1,2,3...E_n = \frac{n^2 \pi ^2 \hbar ^2}{2 \mu a^2} \qquad n=1,2,3...

ψn(x)={2asinnπxa0<x<a0else\psi _n (x)= \begin{cases} \sqrt{\frac{2}{a}}sin \frac{n \pi x}{a} \qquad 0 < x < a \\ 0 \qquad else\\ \end{cases}


  1. 一维谐振子势 $V(x)=\frac{1}{2}\mu \omega ^2 x^2 $ 的定态能量与波函数为(三维同理作简单乘积即可):

En=(n+12)ωn=0,1,2,3...E_n = (n + \frac{1}{2})\hbar \omega \qquad n=0,1,2,3...

n=Nneα2x2/2Hn(αx)\ket{n}=N_n e^{-\alpha ^2 x^2 /2}H_n (\alpha x)

其中

α=μω,Nn=απ1/22nn!n=0,1,2,3...\alpha = \sqrt{\frac{\mu \omega}{\hbar}} , N_n =\sqrt{\frac{\alpha}{\pi ^{1/2}2^n n!}} \qquad n=0,1,2,3...

例:

0=(μωπ)14eμω2x2\ket{0} = (\frac{\mu \omega}{\pi \hbar})^{\frac{1}{4}}e^{-\frac{\mu \omega}{2\hbar}x^2}


  1. 一维 $\delta $ 势场 $V(x) = A \delta (x-a) $ ,其一阶导数不满足连续条件,存在阶跃条件:

ψ(a+)ψ(a)=2μA2ψ(a)\psi ^{'}(a^{+})- \psi ^{'}(a^{-})=\frac{2\mu A}{\hbar ^2}\psi (a)


  1. 平面转子能量与波函数:

Em=m222μr2=m222IE_m = \frac{m^2 \hbar ^2}{2\mu r^2} = \frac{m^2 \hbar^2}{2I}

ψm(φ)=12πeimφ\psi _m (\varphi)=\sqrt{\frac{1}{2\pi}}e^{im \varphi}


  1. 中心力场(A.T.Field!)中定态波函数可表示为:

ψ(r)=R(r)Ylm(θφ)=u(r)rYlm(θφ)\psi (r) = R(r) Y_{lm}(\theta \varphi)=\frac{u(r)}{r}Y_{lm}(\theta \varphi)

其中径向部分 u(r)u(r) 满足方程:

[22μd2dr2+l(l+1)22μr2+V(r)]u(r)=Eu(r)[-\frac{\hbar ^2}{2\mu}\frac{d^2}{dr^2} + \frac{l(l+1)\hbar ^2}{2\mu r^2} + V(r)]u(r) = Eu(r)

角向部分的前几个球谐函数为:

Y00=14π,Y11=18πsinθeiφ,Y11=38πsinθeiφ,Y10=34πcosθY_{00}=\frac{1}{\sqrt{4\pi}},Y_{11}=-\sqrt{\frac{1}{8\pi}}sin \theta e^{i \varphi},Y_{1-1}=\sqrt{\frac{3}{8\pi}}sin \theta e^{-i \varphi},Y_{10}=\sqrt{\frac{3}{4\pi}}cos \theta


  1. 电荷为q的粒子在电磁场中的 H^\hat{H} 为:

H^=12μ[p^qcA(r,t)]2+qΦ(r,t)\hat{H}=\frac{1}{2\mu}[\hat{p}- \frac{q}{c}A(r,t)]^2 + q\varPhi (r,t)


  1. 类氢势场 V(r)=Ze2rV(r)=-\frac{Ze^2}{r} 的定态能量(就写个基态,后面懒得写了自己找吧)与定态波函数为:

En=Z2e22an2E_n = -\frac{Z^2 e^2}{2an^2}

ψ=Z3πa3eZra\psi = \sqrt{\frac{Z^3}{\pi a^3}}e^{-\frac{Zr}{a}}

其中a为玻尔半径 a=2μe2a=\frac{\hbar ^2}{\mu e^2}


常见定理

  1. Hellmann–Feynman定理:

Enλ=ψnH^λψn\frac{\partial E_n}{\partial \lambda}=\bra{\psi _n} \frac{\partial \hat{H}}{\partial \lambda} \ket{\psi _n}


  1. Virial定理:

2<T>=<rV(r)>2<T>=<r \cdot \nabla V(r)>


  1. Ehrenfest定理(即Heisenberg绘景中取期望):

ddt<H^>=1i<[A^,H^]>+<A^t>\frac{d}{dt}<\hat{H}>=\frac{1}{i\hbar}<[\hat{A},\hat{H}]> + <\frac{\partial \hat{A}}{\partial t}>


常见对易关系

  1. B-H恒等式:

eA^B^eA^=B^+[A^,B^]+12![A^,[A^,B^]]+13![A^[A^,[A^,B^]]]+...e^{\hat{A}}\hat{B}e^{-\hat{A}}=\hat{B}+[\hat{A},\hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A},\hat{B}]]+\frac{1}{3!}[\hat{A}[\hat{A},[\hat{A},\hat{B}]]]+...


  1. 常见对易

[f(x),p^]=idf(x)dx[f(x),\hat{p}]=i \hbar \frac{d f(x)}{dx}

[x,f(p^)]=idf(p)dp[x,f(\hat{p})]=i \hbar \frac{d f(p)}{dp}

[Lα^,Lβ^]=iεα,β,γLγ^[\hat{L_{\alpha}},\hat{L_{\beta}}]=i\hbar \varepsilon _{\alpha , \beta , \gamma} \hat{L_{\gamma}}

[Sα^,Sβ^]=iεα,β,γSγ^[\hat{S_{\alpha}},\hat{S_{\beta}}]=i\hbar \varepsilon _{\alpha , \beta , \gamma} \hat{S_{\gamma}}

[σα^,σβ^]=2iεα,β,γσγ^[\hat{\sigma _{\alpha}},\hat{\sigma _{\beta}}]=2i \varepsilon _{\alpha , \beta , \gamma} \hat{\sigma _{\gamma}}

[Lα^,pβ^]=iεα,β,γpγ^[\hat{L_{\alpha}},\hat{p_{\beta}}]=i\hbar \varepsilon _{\alpha , \beta , \gamma} \hat{p_{\gamma}}

[p^,H^]=iV(x)x[\hat{p},\hat{H}]=-i\hbar \frac{\partial V(x)}{\partial x}

[x^,H^]=ip^μ[\hat{x},\hat{H}]=-i\hbar \frac{\hat{p}}{\mu}

[rα,pα^]=i[r_{\alpha},\hat{p_{\alpha}}]=i\hbar


一维谐振子升降算符

  1. 降算符与升算符定义:

a^=12μω(mωx^+ip^),a^=12μω(mωx^ip^)\hat{a}=\frac{1}{2\mu \omega \hbar}(m \omega \hat{x} + i\hat{p}) , \hat{a^{\dagger}}=\frac{1}{2\mu \omega \hbar}(m \omega \hat{x} - i\hat{p})



  1. 对易关系:

[a,a]=1[a,a^{\dagger}]=1



  1. 升降作用:

an=n+1n+1a^{\dagger}\ket{n}=\sqrt{n+1}\ket{n+1}

an=nn1a\ket{n}=\sqrt{n}\ket{n-1}



  1. Hamiltonian可表示为:

H^=(N^+12)ω,其中N^=aa为厄米算符\hat{H}=(\hat{N}+\frac{1}{2})\hbar \omega ,其中\hat{N}=a^{\dagger}a为厄米算符



  1. 递推关系(其中 α=μω\alpha = \sqrt{\frac{\mu \omega}{\hbar}} ):

xn=1α(n2n1+n+12n+1)x \ket{n} = \frac{1}{\alpha} (\sqrt{\frac{n}{2}} \ket{n-1} + \sqrt{\frac{n+1}{2}} \ket{n+1} )

ddxn=1α(n2n1n+12n+1)\frac{d}{dx} \ket{n} = \frac{1}{\alpha} (\sqrt{\frac{n}{2}} \ket{n-1} - \sqrt{\frac{n+1}{2}} \ket{n+1} )

x2n=1α2[n(n1)2n2+(n+12)n+(n+1)(n+2)2n+2]x^2 \ket{n} = \frac{1}{\alpha ^2}[\frac{\sqrt{n(n-1)}}{2}\ket{n-2} + (n+\frac{1}{2})\ket{n} + \frac{\sqrt{(n+1)(n+2)}}{2}\ket{n+2}]

d2dx2n=α22[n(n1)n2(2n+1)n+(n+1)(n+2)n+2]\frac{d^2}{dx^2} \ket{n} = \frac{\alpha ^2}{2}[\sqrt{n(n-1)}\ket{n-2} - (2n+1)\ket{n} + \sqrt{(n+1)(n+2)}\ket{n+2}]



角动量算符

  1. 角动量升降算符定义与衍生:

L±^=Lx^+iLy^\hat{L_{\pm}} = \hat{L_x} + i \hat{L_y}

Lx^=12(L+^+L^),Ly^=12i(L+^L^)\hat{L_x}=\frac{1}{2}(\hat{L_+} + \hat{L_-}),\hat{L_y}=\frac{1}{2i}(\hat{L_+} - \hat{L_-})

L2^=L^L+^+Lz^+Lz2^\hat{L^2}=\hat{L_-} \hat{L_+} + \hbar \hat{L_z} + \hat{L_z^2}


  1. 角动量算符与球谐函数的关系:

L2^Ylm=l(l+1)2Ylm\hat{L^2}Y_{lm}= l(l+1)\hbar ^2 Y_{lm}

Lz^Ylm=mYlm\hat{L_z}Y_{lm}=m \hbar Y_{lm}

L±^Ylm=l(l+1)m(m±1)Ylm±1\hat{L_{\pm}}Y_{lm}=\hbar \sqrt{l(l+1)-m(m \pm 1)} Y{lm \pm 1}

cosθYlm=αYl+1m+βYl1mcos\theta Y_{lm}=\alpha Y_{l+1m} + \beta Y_{l-1m}


  1. 角动量算符的矩阵表示(在l=1的 {L2,Lz}\{L^2,L_z\} 表象下):

Lx^=2(010101010)Ly^=2(0i0i0i0i0)Lz^=(100000001)\hat{L_x}=\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{pmatrix} \hat{L_y}=\frac{\hbar}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \\ \end{pmatrix} \hat{L_z}=\hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ \end{pmatrix}


  1. 角动量算符的本征值与本征矢:

lx=,ψ+=12(121)lx=0,ψ0=12(101)lx=,ψ=12(121)l_x =\hbar,\psi _+ =\frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ 1\\ \end{pmatrix} l_x =0,\psi _0 =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1\\ \end{pmatrix} l_x =-\hbar,\psi _- =\frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2} \\ 1\\ \end{pmatrix}

ly=,ψ+=12(12i1)ly=0,ψ0=12(101)ly=,ψ=12(12i1)l_y =\hbar,\psi _+ =\frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2i} \\ -1\\ \end{pmatrix} l_y =0,\psi _0 =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 1\\ \end{pmatrix} l_y =-\hbar,\psi _- =\frac{1}{2} \begin{pmatrix} 1 \\ -\sqrt{2i} \\ 1\\ \end{pmatrix}

lz=,ψ+=(100)lz=0,ψ0=(010)lz=,ψ=(001)l_z =\hbar,\psi _+ = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \end{pmatrix} l_z =0,\psi _0 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \end{pmatrix} l_z =-\hbar,\psi _- = \begin{pmatrix} 0 \\ 0 \\ 1\\ \end{pmatrix}


自旋角动量算符

  1. 电子的自旋算符矩阵表示( SzS_z 表象下):

Sx^=2(0110)Sy^=2(0ii0)Sz^=2(1001)\hat{S_x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} \hat{S_y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \\ \end{pmatrix} \hat{S_z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}


  1. 泡利矩阵( σz\sigma _z 表象下):

σx=(0110)σy=(0ii0)σz=(1001)\sigma _x= \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} \sigma _y= \begin{pmatrix} 0 & -i \\ i & 0 \\ \end{pmatrix} \sigma _z= \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}

满足广义Euler公式:

eiασj^=cosα+iσj^sinα,σj2^=1e^{i\alpha \hat{\sigma _j}}=cos \alpha +i\hat{\sigma _j}sin\alpha , \hat{\sigma _j^2}=1

满足关系:

[σα^,σβ^]=2iεα,β,γσγ^[\hat{\sigma _{\alpha}},\hat{\sigma _{\beta}}]=2i \varepsilon _{\alpha , \beta , \gamma} \hat{\sigma _{\gamma}}

σα^σβ^=σβ^σα^=iεαβγσγ^\hat{\sigma _{\alpha}}\hat{\sigma _{\beta}}=-\hat{\sigma _{\beta}}\hat{\sigma _{\alpha}}=i\varepsilon _{\alpha \beta \gamma}\hat{\sigma _{\gamma}}


  1. 自旋角动量的本征值与本征矢:

sz=2,ψ+=(10)sz=2,ψ=(01)s_z = \frac{\hbar}{2} , \psi _+ = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix} s_z = -\frac{\hbar}{2} , \psi _- = \begin{pmatrix} 0 \\ 1 \\ \end{pmatrix}

sx=2,φ+=12(11)sx=2,φ=12(11)s_x = \frac{\hbar}{2} , \varphi _+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ \end{pmatrix} s_x = -\frac{\hbar}{2} , \varphi _- =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ \end{pmatrix}

sy=2,ϕ+=12(1i)sy=2,ϕ=12(1i)s_y = \frac{\hbar}{2} , \phi _+ = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \\ \end{pmatrix} s_y = -\frac{\hbar}{2} , \phi _- =\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \\ \end{pmatrix}


  1. 自旋投影算符的矩阵形式:

Sn^=2(cosθsinθeiφsinθeiφcosθ)\hat{S_n}=\frac{\hbar}{2} \begin{pmatrix} cos\theta & sin\theta e^{-i \varphi} \\ sin\theta e^{i \varphi} & -cos\theta \\ \end{pmatrix}


  1. 自旋投影算符的本征值与本征矢:

sn=2,ψ+=(cosθ2eiφ/2sinθ2eiφ/2)sn=2,ψ=(sinθ2eiφ/2cosθ2eiφ/2)s_n = \frac{\hbar}{2},\psi _+ = \begin{pmatrix} cos\frac{\theta}{2}e^{-i \varphi /2} \\ sin\frac{\theta}{2}e^{i \varphi /2} \\ \end{pmatrix} s_n = -\frac{\hbar}{2},\psi _- = \begin{pmatrix} -sin\frac{\theta}{2}e^{-i \varphi /2} \\ cos\frac{\theta}{2}e^{i \varphi /2} \\ \end{pmatrix}


  1. 轨道/自旋角动量耦合:

J2^=L2^+S2^+2L^S^=L2^+342+2L^S^\hat{J^2}=\hat{L^2} + \hat{S^2} + 2\hat{L}\hat{S} =\hat{L^2} + \frac{3}{4}\hbar ^2 + 2\hat{L} \cdot \hat{S}

L^S^=12(J2^L2^342)\hat{L} \cdot \hat{S} =\frac{1}{2}(\hat{J^2}-\hat{L^2}-\frac{3}{4}\hbar ^2)


  1. 两个自旋1/2耦合为三重态与单态:

11=\ket{11}=\ket{\uparrow \uparrow}

11=\ket{1-1}=\ket{\downarrow \downarrow}

10=12(+)\ket{10}=\frac{1}{\sqrt{2}}(\ket{\uparrow \downarrow} + \ket{\downarrow \uparrow} )

00=12()\ket{00}=\frac{1}{\sqrt{2}}(\ket{\uparrow \downarrow} - \ket{\downarrow \uparrow} )


占有数算符

  1. 对玻色子体系:

[ai,aj]=δij,[ai,aj]=[ai,aj]=0,ij=1,2...[a_i,a_j^{\dagger}]=\delta _{ij},[a_i,a_j]=[a_i^{\dagger},a_j^{\dagger}]=0 ,i、j=1,2...

由对易关系可知Ni^=aiai\hat{N_i}=a_i^{\dagger}a_i的本征值ni=0,1,2...n_i =0,1,2...

aini=nini1a_i \ket{n_i}=\sqrt{n_i}\ket{n_i -1}

aini=ni+1ni+1a_i^{\dagger} \ket{n_i}=\sqrt{n_i +1}\ket{n_i +1}

ain1n2...ni...=nin1n2...ni1...a_i \ket{n_1 n_2 ... n_i ...}=\sqrt{n_i}\ket{n_1 n_2 ... n_i -1 ...}

ain1n2...ni...=ni+1n1n2...ni+1...a_i^{\dagger} \ket{n_1 n_2 ... n_i ...}=\sqrt{n_i +1}\ket{n_1 n_2 ... n_i +1 ...}



  1. 对费米子体系:

{ai,aj}=aiaj+ajai=δij,{ai,aj}={ai,aj}=0,ij=1,2...\{a_i,a_j^{\dagger}\}=a_i a_j^{\dagger}+a_j^{\dagger}a_i=\delta _{ij},\{a_i,a_j\}=\{a_i^{\dagger},a_j^{\dagger}\}=0,i、j=1,2...

由反对易关系可知Ni^=aiai\hat{N_i}=a_i^{\dagger}a_i的本征值ni=0,1n_i =0,1

aini=nini1a_i \ket{n_i}=\sqrt{n_i}\ket{n_i -1}

aini=1nini+1a_i^{\dagger} \ket{n_i}=\sqrt{1-n_i}\ket{n_i +1}

ain1n2...ni...=(1)mnin1n2...ni1...a_i \ket{n_1 n_2 ... n_i ...}=(-1)^m \sqrt{n_i} \ket{n_1 n_2 ... n_i -1 ...}

ain1n2...ni...=(1)m1nin1n2...ni+1...a_i^{\dagger} \ket{n_1 n_2 ... n_i ...}=(-1)^m \sqrt{1-n_i}\ket{n_1 n_2 ... n_i +1 ...}

m=α=1i1nαm=\sum_{\alpha = 1}^{i-1}n_{\alpha}



近似方法

  1. 定态非简并微扰论(能量至三级修正,波函数至一级修正):

En(1)=ψn(0)Hψn(0)=HnnE_n^{(1)}=\bra{\psi _n^{(0)}}H^{'}\ket{\psi _n^{(0)}}=H_{nn}^{'}

En(2)=mnHmn2En(0)Em(0)E_n^{(2)}=\sum_{m \ne n} \frac{|H_{mn}^{'}|^2}{E_n^{(0)} - E_m^{(0)}}

En(3)=m,mnHnmHmmHmn(En(0)Em(0))(En(0)Em(0))mnHnnHmn2(En(0)Em(0))2E_n^{(3)}=\sum_{m,m^{'}\ne n}\frac{H_{nm}^{'}H_{mm^{'}}^{'}H_{m^{'}n}^{'}}{(E_n^{(0)} - E_m^{(0)})(E_n^{(0)} - E_{m^{'}}^{(0)})} - \sum_{m \ne n}\frac{H_{nn}^{'}|H_{mn}^{'}|^2}{(E_n^{(0)} - E_m^{(0)})^2}

ψn(1)=mnHmnEn(0)Em(0)ψm(0)\psi _n^{(1)}=\sum_{m \ne n}\frac{H_{mn}^{'}}{E_n^{(0)} - E_m^{(0)}}\psi _m^{(0)}


  1. 定态简并微扰论:写出H’在简并能级下的本征子空间的矩阵元后解一级近似方程就行了,二级近似方程懒得写,自己搜去吧。

  1. 变分法:将试探波函数代入计算,并令其偏导为0,带回求基态的近似能量与近似波函数

E(α)=ψH^ψE(α)αE(\alpha)=\bra{\psi}\hat{H}\ket{\psi},\frac{\partial E(\alpha)}{\partial \alpha}


  1. 含时微扰:粒子跃迁的概率为:

Wkm(t)=120tHmkeiωmktdt2W_{k\rarr m}(t)=\frac{1}{\hbar ^2}|\int_0^t H_{mk}^{'}e^{i \omega _{mk}t}dt|^2

其中

Hmk(t)=mH^k,ωmk=EmEkH_{mk}^{'}(t)=\bra{m}\hat{H^{'}}\ket{k},\omega _{mk}=\frac{E_m -E_k}{\hbar}


  1. 黄金规则公式:

w=2πHmk(E)2ρ(E)w=\frac{2\pi}{\hbar}|H_{mk}^{'}(E)|^2\rho (E)

其中

Hmk(E)=mH^kH_{mk}^{'}(E)=\bra{m}\hat{H^{'}}\ket{k}


  1. 强度为I的连续光照原子发生跃迁的概率速率(电偶极近似):

wkm=4π2e232I(ωmk)rmk2w_{k \rarr m}=\frac{4\pi ^2 e^2}{3\hbar ^2}I(|\omega _{mk}|)|r_{mk}|^2

其中

rmk2=xmk2+ymk2+zmk2|r_{mk}|^2=|x_{mk}|^2 + |y_{mk}|^2 + |z_{mk}|^2

xmk=mxk,ymk=myk,zmk=mzkx_{mk}=\bra{m}x\ket{k},y_{mk}=\bra{m}y\ket{k},z_{mk}=\bra{m}z\ket{k}

电偶极跃迁选择定则:

Δl=±1,Δm=0,±1\Delta l=\pm 1 ,\Delta m=0,\pm 1


  1. 原子的自发跃迁速率为:

Akm=4e2ωkm33c3rmk2A_{k \rarr m}=\frac{4 e^2\omega _{km}^3}{3\hbar c^3}|r_{mk}|^2